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Abstract

Recent developments have brought to the forefront some pressing and difficult problems
concerning the usability of computer systems: lack of a satisfactory general purpose pro-
gramming model for parallel computation; how to achieve efficient utilization of processing
and memory resources; and system resilience in the presence of malicious attacks and the
expectation that future hardware will be more susceptible to faults. These problems have
been exacerbated in the shift to multi-core and many-core processing chips and the evident
future dominance of massively parallel computing platforms.

The Fresh Breeze memory model and system architecture is proposed as an approach
to achieving significant improvements in all three problem areas. In contrast with conven-
tional computer systems and their storage hierarchies, a Fresh Breeze system is envisioned
to support fine-grain management of memory and processing resources and to utilize a
global shared name space for all processors and computation tasks. Scheduling of tasks
and storage allocation are done by hardware realizations, eliminating nearly all operating
system execution cycles for data access, task scheduling and security. In particular, the
Fresh Breeze memory model uses trees of fixed-size chunks of memory to represent all data
objects.

The experiments described in this paper use simulation of a Fresh Breeze system with a
two-level memory hierarchy using 128-byte chunks and up to 40 processor cores. Simulation
experiments are run using the FAST simulator for the Cyclops 64 many-core chip. A test
program, the vector dot product, was written in the Cyclops C language using new libraries
of routines for task scheduling and simulation of the novel memory model. Results to date
demonstrate that: (1) Fine-grain hardware-implemented resource management mechanisms
can support massive parallelism and high processor utilization through the latency-hiding
properties of multi-tasking; and (2) hardware implementation of a work stealing scheme
incorporated in our simulation can effectively distribute tasks over the processors of a many-
core parallel computer.

1 Introduction

Recent developments have brought to the forefront some pressing and difficult problems con-
cerning the usability of computer systems. The problems have been exacerbated by the shift to
multi-core and many-core processing chips and the evident future dominance of massively par-
allel computing platforms. The need for new approaches to the architecture and programming
of massively parallel computer systems has been noted in several publications, including the
widely-circulated Berkeley report [1,2,3]. Furthermore, DARPA has called for a “clean slate”
designs for computer systems providing high performance, resilience and security.

In our view the most serious problems concern:

1. The shift to many-core processing has made program construction tremendously chal-
lenging. A satisfactory general purpose programming model for parallel computation on
current and prospective platforms has eluded many attempts from industry and academia.



2. Achieving efficient utilization of processing and memory resources. Communication among
processors remains a challenging limitation on realizing high processor and memory utiliza-
tion for genuine productive computation. Hardware cycles used in execution of operating
services to application codes are excessive.

3. Security. In current systems it is difficult to defend against introduction of undesired code
(malware). In addition, fault tolerance is becoming a more pressing issue as hardware
feature sizes shrink making devices more susceptible to permanent failure from fabrication
defects and transient failure from noise or radiation.

The Fresh Breeze memory model and system architecture [4, 5] is proposed to provide a
system-wide one-level store supporting fine-grain resource management of processing and mem-
ory resources that is compliant with the capability model for implementing privacy and secu-
rity [6,7,8]. It is believed that embodying this memory model in the basic architecture of parallel
computers can achieve significant improvements in all three problem areas.

Figures 1 and 2 illustrates the contrast between the Fresh Breeze concept of computer
system organization and a typical conventional computer system with multiple levels of storage
media in its memory hierarchy. In the conventional system, Figure 1, allocation and transfer of
instructions and data at the processor/cache level is done automatically by the hardware. When
it comes to main memory allocation and management, a combination of paging hardware and
operating system code is used to give processes a virtual memory behaving as a one-level store.
Throughout these top levels of the memory hierarchy, a uniform scheme is used for naming and
accessing data objects — the virtual address. Beyond the main memory, however, operating
system software is responsible for the entire task of organizing information, and allocating units
of data, usually known as "files", on the disk units of the computer system. The naming and
accessing of data object (files) is supported by a software scheme of directories and I/O drivers
entirely distinct from the virtual addresses employed when data is in main memory or processor
cache memories. The processor cycles devoted to managing data access and transfer are cycles
that would otherwise be available for performing computation tasks for the users.

In the Fresh Breeze vision, Figure 2, the entire memory hierarchy is treated as a unified one-
level store, from processor cache memories through the main memory and on to the disk storage
units. A single naming scheme is used throughout the hierarchy, a handle uniquely identify a
fixed-size chunk of program or data. Memory allocation and data transfer is performed entirely
by hardware mechanisms so there is zero involvement of operating system software in data access
and management.

The handles of the Fresh Breeze memory model are equivalent to capabilities (6,9, 8, 7],
providing a basis for realizing advanced security and privacy properties in a Fresh Breeze system.

The Fresh Breeze vision also includes hardware implementation of activity scheduling, which
is greatly simplified by use of a memory model that provides a uniform view of memory through-
out all jobs and processors of a massively parallel computer system. The combination of the
chunk-based memory model and hardware for fine-grain processor switching will provide an abil-
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Figure 1: Contrasting conventional and Fresh Breeze systems.

ity for modular composition of parallel programs well beyond what is possible with any existing
computer system.

Synopsis: In Section 2 the Fresh Breeze memory model is presented. Section 3 describes
the tasking model for concurrency adopted for this work. A vision of future computer system
organization utilizing Fresh Breeze principles is provided in Section 4 and discussed. The next
part of the paper describes the experimental implementation of a first Fresh Breeze API using
Cyclops 64 simulation software developed at the University of Delaware and the company ET
International in collaboration with IBM. Section 8 presents results and a discussion of their

significance.

2 The Fresh Breeze Memory Model

In the Fresh Breeze Memory Model [3]|[20] information objects and data structures are rep-
resented using fixed size chunks, 128 bytes in the present design. Each chunk has a unique
64-bit identifier, a capability, that serves to locate the chunk within the storage system, and is
a globally valid reference to the chunk. A collection of chunks organized as a directed acyclic
graph (DAG) can represent structured information as illustrated in Figure 2. For example, a
three-level tree of chunks could represent an array of 16 * 16 * 16 elements. Data objects and

data structures may be represented by unbounded trees of chunks.

The Fresh Breeze memory model is a write-once model meaning that chunks may be created
and written by a user of the memory model, but access to a chunk is not permitted for more than
one computing activity (task) without its content being frozen and rendered read-only. The life-
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cycle of a chunk may be summarized as follows: (1) A chunk is acquired by a producer task from
the memory system (or hardware whichever you like); (2) The chunk is then written and sealed
by the producer task; (3) Once sealed the chunk is shared with consumer threads; (4) When
usage of the chunk becomes low, it will be evicted from higher levels of the memory hierarchy
until it only resides in the lowest level; (5) It is deleted once there are no more references to the
chunk.

One benefit of a write-once memory model is that cache memories may be used without con-
sistency issues: Several computing tasks running in separate parts of a system may access data
with no concern that it might be stale. Adopting the write-once property leads to a functional
view of memory: A computing step involves accessing existing data values and creating fresh
memory chunks to receive results. To work effectively very efficient mechanisms for allocating
memory and collecting chunks that no longer contain accessible data are required. Use of a
fixed-size unit of memory allocation and the write-once principle makes this feasible. It also
permits use of low-overhead reference counts to identify garbage chunks for reclaiming their

memory.

The Fresh Breeze memory model provides a global addressing environment, a virtual one-
level store, shared by all user jobs and all processors of a many-core computing system. It can
extend to the entirety of online storage, replacing the separate access to files and databases of

conventional systems.

3 The Concurrency Model - Spawn and Join

Fresh Breeze support for concurrency in program execution [10] is similar to the spawn/join
model of Cilk [11] parallel programming. The basic unit of parallelism is the task, which is the
activity of performing a single execution of a function instantiation, corresponding typically to
a single call of a Java method. As shown in Figure 3, a task may spawn one or more worker
tasks executing independent instances of the same or different functions. Worker tasks may
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Figure 3: Fresh Breeze parallelism using Spawn and Join.

read data objects (scalar values or capabilities) from their parent task, and each worker task
contributes the results of its activity to the parent task using a join mechanism [10]. Through
repeated use of this scheme, a program can generate an arbitrary hierarchy of concurrent tasks
corresponding to available parallelism in the computation being performed. The spawn/join
mechanism is implemented by special machine level instructions of the Fresh Breeze application
program interface (API).

To Illustrate, consider the dot product computation which is the focus of the experiments
reported in this paper. The complete computation consists of constructing two vectors and
then computing their dot product. Straightforward code for this computation may be written
as follows:

vector BuildVector (long length, long seed) {
long|| vector = new long|length];
for (int i = 0; i < length; i4+)
vector [i] = generate (length, seed);
return vector;
}
long DotProduct (
long|| vector_a,
long|| vector b,
long length) {
long sum = 0;
for (int i = 0; i < length; i++)
sum += vector_ali|] * vector bli];
return sum;
}
void main () {
long length = N;
long[] vector _a = BuildVector (length, seed _a);



that uses the chunk-based memory model and instructions for spawning and joining tasks. A
pseudo-code version of the Fresh Breeze machine code for the DotProduct method of the FunJava
program given above follows. The handle data type is used for the 64-bit capability codes of

long|| vector b = BuildVector (length, seed b);
long result = DotProduct (
vector _a, vector b, length);

For execution by a Fresh Breeze computer, this code will be compiled into machine code

chunks.

long DotProductMain (

}

handle vector_a,
handle vector b,
long length) {
// Calculate tree size
long tree size = ... ;
DotProduct (vector a, vector b, length, tree size);
return result;

void DotProduct (

handle vector_a,
handle vector b,
long length),
long tree_size) {
chunk chunk a = chunk read (vector a);
chunk chunk b = chunk read (vector b);
if (tree_size > CHUNK _SIZE) {
// Process internal nodes
chunk join ticket =
join__init (count, DotProductDone, count);
for (int idx = 0; idx < count; idx++) {
// Calculate node size and subtree size
node_size = ... ;
tree size = ... ;
spawn_one (idx, DotProduct (
chunk alidx|, chunk blidx]|, size, tree size) );
¥ exit, ();
} else {
// Process a leaf node
long sum = 0;



for (int idx = 0; idx < count, idx++ ) {
sum += chunk alidx| * chunk _alidx];

}

join _update (sum);

}

void DotProductDone (int count) {
handle data = join fetch ();
chunk join_data = chunk read [idx];
long sum = 0;
for (int idx = 0; idx < count; idx++) {
sum += join data [idx];
}

join _update (sum);

The phrases spawn __init, spawn_one, join fetch and join update are the special
Fresh Breeze instructions to support concurrency. The instruction spawn __init creates a join
ticket that holds a join counter and the name of a function that defines the task for execution by
a worker; spawn__one creates a new task for execution with the specified index; join fetch
is used after a join chunk has been filled by worker tasks using the join update instruction.
It provides the handle of the (now filled) join data chunk. Execution of a join update causes
a worker task to quit, turning the processor to other tasks.

Exectuion of this code begins with a single task and rapidly generates independent tasks
to perform work on subtrees of chunks. An invocation of the dot product method on vectors
of length 16° will generate a tree of tasks with 16* = 65,536 leaf tasks, each performing one
16-element dot product to contribute to the ultimate result. The experimental results (Section
8) show that this computation can be performed in the envisioned Bresh Breeze computer with
high efficiency. Results for other computations await further experimentation.

4 Computer System Structure and the Memory Hierarchy

The envisioned organization of a Fresh Breeze computer system is illustrated in Figure 4. The
main components are a multitude of many-core processing chips coupled to a multi-level off-
chip storage system. Each many-core processing chip uses processor cores similar to those of the
Cyclops 64 chip [12], coupled to the top levels of a memory hierarchy consisting of L1 instruction
and data cache memories at each processor, and a shared on-chip L2 cache.

Many-Core Chip. The distinguishing features of the multi-core processor chip are:

e The cache memories are organized around chunks instead of typical cache lines, to benefit
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Figure 4: Vision of a massively parallel Fresh Breeze system.

from the locality provided by the chunk-based memory model.
e There is no TLB because capabilities are held in chunks and in processor registers.
e Processor registers will be tagged to flag those holding capabilities.

e A new load/store unit will be used to provide create and read execute support for memory
chunks.

Storage System. The Storage System is a hierarchical memory system in which the
higher levels (closer to the processors) cache data chunks actively involved in on-going com-
putations [13].

In Figure 4 two off-chip storage levels are illustrated for simplicity; the architecture may
be extended to further levels as demanded by the device technology available and the storage
capacity required by a system.

There is no relation of the 64-bit number that is the capability code of a chunk, and the
physical location where it is held in the Storage System. This property permits new data to
be stored in proximity to the location in the system where they are generated. To support this
property hardware-supported associative search is used to map a global pointer to the physical
location where the designated chunk is to be found.

Another function performed by the Storage System is to supply free capability codes to the
processing chips for assignment to newly created chunks. A data structure is maintained, that
keeps a record of available codes. Capability codes are assigned from the free pool and returned
to the pool when the reference count shows they are no longer needed.

The principal components at each level of the Storage System are multiple storage devices
to hold data chunks, and an associative directory for mapping chunk identifiers (global pointers)
to the locations where chunks reside. At the lowest level (The Main Memory) the set of storage
devices is sufficient to hold all data in the computer system, and is partitioned according to
a division of the set of possible capability codes. Accordingly, each directory must map to a



sufficiently large physical space to accommodate all data in its part, and its implementation
must be able to handle the anticipated traffic, although a relatively long search time may be
acceptable to reduce cost.

For directory implementation, we have studied hardware implementation of the B-Tree data
structure commonly used in software file systems for mapping file names or identifiers to physical
locations. The results are very encouraging in that an associative search is guaranteed to
complete in a fixed number of clock cycles, and the implementation uses RAM memory instead
of area and power hungry CAM hardware.

5 Simulation Facility

Dr. Xiaoxuan Meng of the University of Delaware, working with Prof. Jack Dennis of MIT has
implemented a simulation model of a two-level Fresh Breeze memory system. The simulation
uses an existing simulation system [14], built by a collaboration of IBM and E.T. International,
for testing and evaluating the IBM Cyclops 64 many-core chip [12]. The chip contains 80
processing assemblies, each consisting of two independent Thread Units (TUs) sharing a floating
point unit. Each TU has an associated 30 KB block of SRAM. There are several instruction
cache memories, each serving a group of ten TUs. The chip incorporates a cross-bar switching
network that interconnects all 160 TUs, allowing each TU to access the SRAM of any other TU.
The TUs have access to 1Gb of off- chip DRAM memory through four additional ports of the
X-bar network.

In our Fresh Breeze simulation, 40 thread units serve as E-processors and execute application
tasks; most of the remaining 120 are S-processors used to implement a simulation of the Fresh
Breeze Storage System, using SRAM for associative directories of a top storage level and the
DRAM for a shared main storage level. Runtime software has been written to schedule user
tasks on the E-processors and to implement the Storage System simulation. We are writing test
programs in C and compiling with the Cyclops C compiler.

6 Scheduling and Work Stealing

The Fresh Breeze simulation models a hardware scheduling mechanism in each of the application
task processors. The elements of this mechanism are the Active Task List and the Pending
Task Queue. The Active Task List (ATL) contains an entry for each of several tasks that the
simulated processor switches among when a task in execution becomes blocked (usually due to a
chunk read instruction). An entry in the ATL holds the complete processor state for resuming
the task when the reason for being blocked is resolved. (A blocked task is never resumed on
another processor; it runs on its assigned processor until it quits, releasing the processor to take
up a fresh task.)

The Pending Task Queue (PTQ) is a queue of tasks generated by Spawn instructions, that
are available for execution. An entry in the PTQ just contains: (1) the address of the function



to be applied by the new task; (2) the handle of an argument structure (chunk) containing
argument values for use by the new task; and (3) the handle of the join ticket used by the
new task to record its result. The PTQ entry does not include any processor register contents
because a new task is assumed to start fresh and not depend on any register contents; The
program counter is implicitly set to zero (indicating the first instruction of the method for the
spawned task). Any application processor can perform any pending task just by loading the
contents of a PTQ entry, a consequence of the global validity of handles and their power to
provide access to arbitrarily large data object.

In the experiments (Section 8), the ATL for each application processor has five entries and
the PTQ has 64 entries. The chip area required for the ATL and PTQ would be a small fraction
of the silicon area of a processor.

Actions performed by the simulated processor are:

1. Execute a task from the ATL.

2. Perform a storage system chunk read or chunk write instruction issued by a task.
3. On a join_init instruction, initialize a join ticket chunk.

4. On a spawn _ one instruction, add an entry to the PTQ and continue task execution.

5. On a task exit instruction, delete the task from the ATL and select a task from the
PTQ to make active.

Additional actions are used for implementing the join mechanism:

1. Ona join update instruction, write the result value (scalar or handle) into the join _data
chunk, update the join count, and terminate the worker task.

2. On a join_fetch instruction, return the handle of the join data chunk to the master
application task and mark the join ticket chunk as garbage.

The scheduling mechanism described above does not provide for distributing spawned tasks
over the large number of processors of a massively parallel system. The current Fresh Breeze
emulation includes a work stealing scheme that is a variation on work stealing in Cilk. It is
designed to model a low-cost hardware mechanism.

Task stealing is used by a processor to maintain the number of entries in its PTQ between
two limits; if the number of entries is less than the lower limit, this processor is not willing to
give away any of its tasks; if the upper limit is exceeded, the processor wants to steal tasks from
the PTQs of any other processors willing to permit stealing.

The emulation uses two tables located in memory globally accessible by all processors of a
domain or cluster of processors in a large system. This approach can be extended hierarchically
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as needed. These tables are managed by a reserved Steal Daemon processor in the emulation.
The work of the Steal Daemon is sufficiently simple that it could readily be implemented in
hardware in the envisioned Fresh Breeze system.

One table, the Steal List, contains an entry for each processor of its domain/cluster. The
entry specifies the identity (processor number) of some processor of the domain that has tasks
for stealing. The entry is undefined if the Steal Daemon judges that stealing has no benefit for
the task processor at this time. A processor accesses its entry in the table using a read/replace
memory operation that sets the entry to undefined and provides the identity of a processor with
available tasks in its PTQ; the processor removes the task from the target processor’s PTQ. If
stealing fails, the requesting processor will do other work and make a new request after a preset
time interval.

The second table, the Load Table, is provided so the Steal Deamon can know the load
status of each processor of the domain. It contains simply a boolean value maintained by each
processor to indicate whether or not the processor’s PTQ has more entries than its lower limit.
The steal Daemon maintains the Steal Table continuously based on its knowledge of the load on
each processor. The rule is: initialize all entries of the Steal Table to Undefined; then, for each
processor, if its entry is undefined, set it to the identifier of some processor with more than the
lower limit of entries in its PTQ.

An additional problem is dealt with by the task scheduler. If so many tasks are generated
that there is insufficient room the PTQs of all processors, the scheduler must somehow retain
records of then so they may be scheduled at a future time when the overload condition has
subsided. This is done in our present simulations by means of a global deferred task queue held

in the memory system.

7 System Modeling with Simulation

In this section the relation between the system being model and the emulation is discussed.
First, the system studied by our modeling experiments is described. It is limited to a two-
level memory hierarchy by the design of the present simulation capability. Extension to a
more extensive memory hierarchy is planned. Then the issues in relating actions in the modeled
system to simulation events are discussed, together with the solution adopted to obtain accurate
modeling of the timing of the modeled system

7.1 The System Modeled

Figure 5 shows the system modeled in our simulations which has two memory levels. We take the
upper level as modeling an L1 cache unit which is private to each processor. The lower memory
level is a Shared Memory System that may be regarded either as a shared L2 cache accessible
to all processors, or as a main memory level. The two choices differ in their access times, so
we use the “main level” access time as a principal parameter in our experiments. In both levels

11
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Figure 5: Fresh Breeze system for modeling with two memory levels.

memory is allocated in units of one chunk. Reference count garbage collection is used to reclaim
memory chunks no longer accessible. The hardware implementation of garbage collection is not
expected to have a significant impact on the performance results reported below.

For the present experiments, only data objects are held as trees of chunks. The program
code is held just as code is held for normal Cyclops 64 simulation. This should not affect our
experiments other than by Cyclops instruction cache misses which we believe are rare.

We assume the upper memory level (L1) may be accessed in two clock cycles and that read
one chunk of data into processor register takes 16 clocks. Since this combination always occurs
together in the Dot Product test program, we treat the pair as a single action. This permits
use of less padding to equalize the times per clock of all actions and provides a more practical
duration of simulation runs.

The upper level is operated as a fully associative cache where the cache tag is the handle of
the referenced chunk. Each L1 cache holds 128 chunks or 16K bytes of data.

For specificity we chose the system clock rate to be 500 MHz, a common choice for many
core chips such as the Cyclops 64.

7.2 Events in emulation versus actions in an implementation

The simulation code consists of routines that model various actions in the modeled system.
Unfortunately, there is a large disparity among the numbers of Cyclops chip cycles required
for the various action and they depart significantly from a uniform multiple of the clock cycles
needed in the modeled system. The following table shows the several actions exercised by the
Dot Product test program. For each action the table shows the clock cycles assumed needed
in the modeled system and the simulation cycles used by the corresponding simulation routine.
For our experiments, we made the simulation time exactly proportional to the modeled system
time by choosing a ratio of simulation cycles to system cycles and adding "padding" cycle to
each simulation action routine to provide a uniform ratio of 160. In this way, cycle-accurate
modeling of the subject system is achieved. The padding cycles and total simulation cycles for

12



Table 1: Cycle-accurate modeling of the system

action system simulation padding total
cycles cycles
Task Startup 4 262 378 640
Task (Compute) 32 376 4844 5120
Task (Save/Restore) 16 262 4095 2560
Shared Mem. Data Transfer 16 3047 0 2560

each action are shown in columns four and five of table 1

The simulation experiments are conducted for two scenarios: In the first scenario, the Shared
Memory System models a shared L2 cache memory. For this case, access times are relatively
short and performing chunk read operations without blocking the processor is the preferred
mode of operation. For these tests the action of Task Save and Task Restore do not apply.
In the second scenario, the Shared Memory System models a main memory with longer access
times. For the Fresh Breeze architecture, task switching times are sufficiently short that it may
be beneficial to use a blocking read wherein the processor is switched to a different task while a
chunk read operation is performed. For these tests the Task Save/Restore action model the
retention of processor register state across read operations.

The Shared Memory System is modeled by simulation routines running on each Cyclops
processor used to simulate the Shared Memory. Each routine maintains a queue of access
requests for each separate memory unit. In the modeled system a shared memory access request
must traverse the Switch, with arbitration, and then wait at the memory unit until it can be
served and the chunk location determined. Then the data transfer is performed in 16 cycles.
The switch, arbitration, and queuing delays make up the Access Time, which is a parameter
of the simulation runs. Instead of padding each simulation routine to model the delay, time
stamps are used to operate each request queue so that many requests may be entered while each
requested data transfer is not performed until the specified number of cycles have elapsed.

8 Experiments

In our simulation runs, the Dot Product computation was run for several vector lengths and
various values of parameters of the modeled system.

To begin, table 2 shows the numbers of task executions needed for processing leaf chunks
and non-leaf chunks of tree representations of the vectors.

Since 16 multiplies and 15 adds are performed in processing a leaf chunk and 15 adds are
performed for each non-leaf chunk, the totals of adds and multiplies are readily calculated. As

13



Table 2: Number of task executions and operations

vector leaf non-leaf total adds multiplies

length tasks tasks tasks

162 16 1 17 255 256
163 256 17 273 4095 4096
164 4096 273 4369 65535 65536
16° 65536 4369 69895 1048575 1048576

950

~-16"3 81674 —4-16"5 /
790 //

630

e
———

5 10 20 40 60 80 100 120 160 200
Access Time - Cycles

Cycles per Task

310

150

Figure 6: Non-blocking read scenario: system cycles per task.

is evident from the table, the case of length 162 vectors does not generate sufficient tasks to
assign even one apiece to 40 processsors, so it will not be considered further.

First presented are basic performance measures where performance is presented as the av-
erage number of cycles per task over all tasks executed in the simulation run. The charts show
the performance for three vector lengths and various shared memory access times for the two
cases of interest. In Figure 6 reads are non-blocking, modeling behaivoir of an L2 shared cache;
In Figure 7 reads are blocking, with suspension of the task and swapping procesor state to run
an alternative task. This models a main memory where the fine-grain task management of the
Fresh Breeze architecture serves to provide help with latency tolerance, even for typical main
memory access times. In all of these runs a system having 40 processors and 64 independent
shared memory units was simulated.

The best performance shown in these runs achieves an average of 200 cycles per task. Using
the numbers of leaf and non-leaf tasks from the table and the corresponding counts of adds and
multiplies, the number of operations per task for vectors of length 16° is 30.0. For a processor
operating at a 500 MHz clock rate, this corresponds to a performance of (30 * 500)/200 = 75
million operations per second per processor or 3000 MOPS for the set of 40 processors.
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Figure 7: Blocking read scenario: system cycles per task.

In addition to average performance, the simulations have demonstrated the ability of hardware-
supported work stealing. Figures 8 and 9 show how well the task processing load is distributed
over the 40 processors for the three vectors lengths.

Also evaluated in these experiments is the need for splitting the shared memory into sepa-
rate banks for the goal of avoiding congestion from competing access requests. However, even
reducing the count of shared memory units to 16 did not show any effect on the results for the
ranges of access times studied.

8.1 Discussion

For the processor characteristics chosen for this study the maximum possible performance for
the Dot Product computation for a 16-element vector is determined by the 32 cycles to execute
32 pipelined arithmetic operations and 32 cycles to access vector elements from top-level cache
or (32 * 500) / 64 = 250 MOPS. The experiments show that the Fresh Breeze architecture is
able to achieve 30 percent of this maximum. This is satisfying as memory and storage manage-
ment functions are both performed entirely by the system, with no involvement of application
programmer or compiler.

It will be a challenge to further develop the Fresh Breeze architecture to encompass additional
levels of the storage hierarchy and massively parallel systems in which it is impractical for all
processors to have shared access to the main storage level.

8.2 Work Stealing

A high processor utilization requires that the tree of parallel tasks be distributed over the
available processors as quickly as possible.

However, the modeled system structure shown in Figure 5 is not scalable to unbounded
system sizes because all of the shared storage units are equally accessable to all processors.
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Figure 8: Load distribution performance of work stealing for Shared L2 Cache

As a result, it makes no difference which processor gets to run any particular task. Under
these conditions, the goal of scheduling and task distribution is to ensure that if there is a
free processor and work to be done, the processor gets some work assigned. The mechanism
employed in the system modeled in these experiments has been shown to be effective at this job.
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Figure 9: Load distribution performance of work stealing for Main Memory

For much larger systems it becomes important to recognize the non-uniform access charac-
teristics of practical scalable architectures for memory hierarchies. It follows that the locations
of data structures must be considered in the design of any scalable, general task distribution
scheme. This is expected to be a challenge for future research.
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8.3 Caching

The traditional role of cache memories in computer systems has been to reduce the idle time of
processors by exploiting temporal and spatial locality. It is expected that data once loaded into
a cache memory is likely to be accessed again within a short time interval (temporal locality).
In addition, in the conventional linear address space, it is expected that nearby data items have
a strong likelihood of being accessed within a short interval (spatial locality). The well-known
working set concept defines the working set as the collection of data items accessed in a specified
time interval looking backward, and experiments show that the working set often contains data
located in close proximity in the address space.

The size of the L1 cache played no role in these simulation results. Essentially all memory
references in runs of Dot Product resulted in data transfers from the Shared Memory. This
did not result in a big performance problem because of the inherent locality of data residing in
one memory chunk: a cache miss on a chunk read instruction causes transfer of the entire
chunk and further accesses proceed at the L1 cache rate. Further system design study may
exploit another locality benefit of the tree-structured data model: if a node is accessed, it is
likely that its children will also be accessed. This suggests an implementation in which the
system automatically fetches the child chunks of a node to some memory level when a request
is received at that level for access to the node.

The Dot Product test computation involved zero reuse of data. This is not characteristic
of most computations, for example, matrix multiplication which will be studied for the Fresh
Breeze architecture. In general, the cache mechanism will likely be an important contribution
to overall performance in future Fresh Breeze designs.

8.4 Excess Parallelism

In a general purpose parallel computing system, the user should be able to write programs with-
out being aware of exactly how much parallelism they will offer for exploitation by the system.
This circumstance is compounded if a large program is assembled from modular components
whose degree of exposure of opportunities for parallelism are not known to their user. The
best approach is to express the components in a form (such as FunJava) that permits ready
discovery of parallelism and its exploitation. This is only practical if the system supports rapid,
fine-grain allocation and recovery of resources, primarily memory and processing capability. We
have had a good solution for memory allocation in single processor systems: the familiar cache
hierarchy and paged virtual memory of most of today’s computer systems. The time has come
to be equally creative in making virtual memory available in many-core systems to support true
“programming generality”.

The consequence of supporting modular parallel programming is that computations will
generally offer more parallelism, even much more(!), than can be actually exploited at any time
by the system. This generates a need for either "throttling" the generation of tasks or providing
a way for the system to remember the tasks that need to be taken up when resources (processors)
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become free.

In our experimental emulation, we chose to have each processor maintain a 64-position queue
of pending tasks. With this choice the computation of the dot product for vectors of length 16°
generated 209,716 tasks under main memory model with 100 cycles of access latency (which
is a typical value for the current main memory technology), all but 412 of which never sent to
the deferred pool but were either taken from the pending list by the local processor, or were
stolen from the pending list of another processor. Thus it seems that managing deferred tasks
is manageable with suitable fine-grain hardware scheduling support.

9 Future Plans: A Fresh Breeze Demonstration System

To further explore and demonstrate Fresh Breeze principles two lines of work will be followed.

First, our simulation facility must be augmented to encompass a more complete model of
a realistic fresh Breeze computer system (as illustrated by Figure 4). In particular, a memory
hierarchy of three levels is needed to show the power of the memory model to replace conventional
file storage media. It is hoped that a demonstration system including a large capacity flash
memory level can be built using FPGA technology.

Global access to the lowest level of shared memory is the Fresh Breeze means of supporting
full interprocessor communication for very large systems (passing data objects through transfer
of handles instead of high-bandwidth communication).

The second direction is to expand testing and evaluation to representative computations
from a variety of application areas. It is expected that this will include stream processing and
transaction-oriented applications as well as more ambitious codes for scientific computation.
Applicability of the trees-of-chunks model to large graphs will be tested. In support of code
development for testing, completion of the FunJava compiler [15] will be important.

10 Related Work

The idea of using trees as a general model for data structures in computer architecture was
introduced many years ago [16]. An attempt to use the concept in an experimental project
was reported in 1984 [17]. The proposal had little influence because many workers argued that
the cost of accessing elements for a tree would grow as the logarithm of its size, making usable
performance impossible to achieve in practice. A second objection has been that the prohibition
of cycles would limit model’s generality of application. We hope the present study helps answer
the first argument; application of the Fresh Breeze architecture to massively parallel graph
algorithms will be part of our future work.

The idea of building a computer system with unique handles for all data objects is central
to the capability concept. It is the logical extension of virtual memory ideas embodied in
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Multics [18], and a successful commercial implementation is used in the IBM AS/400 systems
[19]. A software implementation of capabilities is available [9] and a successor Coyotos is under
development. However, these are software implementations that do not have the tight security
feature of hardware-based capabilities.

During the past two decades, techniques for dynamic load balancing have been studied
extensively in the context of several multithreading implementations. These include Cilk [20,11],
EARTH |21,22| and the scheduling of parcels in HTMT [23|. The Rice University proposal for
the HPC language Habanero Java includes the idea of place tree hierarchies as a means to
offer programmers a range of options from fully specifying the mapping of parallel task to
processor, to granting the system the responsibility of making the assignment. This work is a
revision of the X10 programming language, which uses the asynch/finish concurrency control
primitives [24,25,26,27|. Related work appears in the HPC language Cascade [28|.

In contrast to these software approaches, the Japanese Sigma 1 data flow computer in-
cluded an interprocessor network that automatically routes remote function invocations to
lightly loaded processors [29]. The work stealing technique used in the reported simulations
may be regarded as an implementation of Cilk ideas using similar principles to the Sigma 1.

Tools for conducting system evaluation through simulation and emulation is an area of
active work [30,31]. The RAMP project [32] system developed at Berkeley is a good example.
It is a FPGA-based many core emulation platform. This system deploys Xilinx Vertex-II Pro
FPGAs on 16-21 BEE2 boards to implements a many core system composed of 1000 plus
cores. The purpose of the RAMP project is to explore the architecture design space for future
many-core computer architecture and enable early software development and debugging. It is
intended to define and create the next generation tools for computer architecture and computer
system research. In contrast, the simulation tool used in this paper is an industry-strength
system that can simulate the entire logic of the IBM Cyclops-64 chip with its 160 cores [14].
An implementation of a system emulation facility equivalent to the FAST simulator has been
constructed using FPGA devices and is used for the validation of both architecture and system
software implementation.

11 Conclusion

The work reported here has suggested the merits of a new memory model using trees of fixed
size memory chunks to represent all data objects. Furthermore, the advantages of hardware
implementation of scheduling and load distribution functions have been demonstrated, albeit
in a limited scenario. Further work is needed to extend the system model and to study its
performance for a variety of applications.

The Fresh Breeze architecture is an attractive basis for building future multiuser computer
system with excellent security and protection properties by virtue of the equivalence of handles
of objects with capabilities.
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Further exploration of novel approaches to the architecture of highly parallel systems seems
eminently justified.
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